Variational iteration method for solving cubic nonlinear Schrödinger equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Fractional Variational Iteration Method for Solving the Generalized Time-Space Fractional Schrödinger Equation

Based on He's variational iteration method idea, we modified the fractional variational iteration method and applied it to construct some approximate solutions of the generalized time-space fractional Schrödinger equation (GFNLS). The fractional derivatives are described in the sense of Caputo. With the help of symbolic computation, some approximate solutions and their iterative structure of th...

متن کامل

He’s Variational Iteration Method for Solving Fractional Riccati Differential Equation

We will consider He’s variational iteration method for solving fractional Riccati differential equation. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converges to the exact solution of the problem. The present method performs extremely well in terms of efficiency ...

متن کامل

Applying He’s Variational Iteration Method for Solving Differential-Difference Equation

We extend He’s variational iteration method VIM to find the approximate solutions for nonlinear differential-difference equation. Simple but typical examples are applied to illustrate the validity and great potential of the generalized variational iteration method in solving nonlinear differentialdifference equation. The results reveal that the method is very effective and simple. We find the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2007

ISSN: 0377-0427

DOI: 10.1016/j.cam.2006.07.023